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Abstract 
Recently suggested scheme [1] of quantum computing uses g-qubit states as 
circular polarizations from the solution of Maxwell equations in terms of 
geometric algebra, along with clear definition of a complex plane as bivector 
in three dimensions. Here all the details of receiving the solution, and its pola-
rization transformations are analyzed. The results can particularly be applied 
to the problems of quantum computing and quantum cryptography. The sug-
gested formalism replaces conventional quantum mechanics states as objects 
constructed in complex vector Hilbert space framework by geometrically 
feasible framework of multivectors. 
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1. Introduction 

The circular polarized electromagnetic waves are the only type of waves follow-
ing from the solution of Maxwell equations in free space done in geometric al-
gebra terms. 

Let’s take the electromagnetic field in the form:  

( )0 exp SF F I tω= − ⋅  k r                         (1) 

requiring that it satisfies the Maxwell system of equations in free space, which in 
geometrical algebra terms is one equation: 

( ) 0t F∂ +∇ =                              (2) 

How to cite this paper: Soiguine, A. (2018) 
Polarizations as States and Their Evolution 
in Geometric Algebra Terms with Variable 
Complex Plane. Journal of Applied Ma-
thematics and Physics, 6, 704-714. 
https://doi.org/10.4236/jamp.2018.64063 
 
Received: March 7, 2018 
Accepted: April 17, 2018 
Published: April 20, 2018 
 
Copyright © 2018 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2018.64063
http://www.scirp.org
https://doi.org/10.4236/jamp.2018.64063
http://creativecommons.org/licenses/by/4.0/


A. Soiguine 
 

 

DOI: 10.4236/***.2018.***** 705 Journal of Applied Mathematics and Physics 
 

where ˆ ˆ ˆ
x y z

x y z∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 and multiplications are the geometrical algebra 

ones. 
Element 0F  in (1) is a constant element of geometric algebra 3G  and SI  is 

unit value bivector of a plane S in three dimensions, that is a generalization of 
the imaginary unit [2], [3]. The exponent in (1) is unit value element of 3G+  [3]: 

e cos sin ,  SI
SI tϕ ϕ ϕ ϕ ω= + = − ⋅k r  

Solution of (2) should be sum of a vector (electric field E) and bivector (mag-
netic field 3I H ): 

3F I= +E H  

with some initial conditions: 

3 0 3 0 3 00, 00, 0 0, 0tt tI F I I
= == = = =

+ = = + = +rr rE H E H E H  

In the magnetic field 3I H  the item 3I  is unit pseudoscalar in three dimen-
sions assumed to be the right-hand screw oriented volume, relative to an or-
dered triple of orthonormal vectors. 

Substitution of (1) into the Maxwell’s (2) will exactly show us what the solu-
tion looks like. 

2. Solution in the Geometric Algebra Terms 

The derivative by time gives  

( )0 0e eS SI I
S S SF F I t F I FI

t t
ϕ ϕω ω ω

∂ ∂
= − ⋅ = =

∂ ∂
k r  

The geometric algebra product F∇  is: 

( )0 0e eS SI I
S S SF F I t F I FIϕ ϕω∇ = ∇ − ⋅ = − = −k r k k  

or 

( )0 0e eS SI I
S S SF F t I F I F Iϕ ϕω∇ = ∇ − ⋅ = − = −k r k k , 

depending on do we write ( )SI tω − ⋅k r  or ( ) St Iω − ⋅k r . The result should be 
the same since tω − ⋅k r  is a scalar.  

Commutativity S SI I=k k  is true only if 3 0SI I× =k . The following agree-
ment takes place between orientation of 3I , orientation of SI  and direction of 
vector k [3]. The vector 3 3S SI I I I=  is orthogonal to the plane of SI  and its 
direction is defined by orientations of 3I  and SI . Rotation of right/left hand 
screw defined by orientation of SI  gives movement of right/left hand screw. 
This is the direction of the vector 3 3S SI I I I= . That means that the matching 
between k̂  and SI  should be 3

ˆ
Sk I I= ±  or 3

ˆ
SkI I=  1. 

Assuming that orientation is 3
ˆ

SI kI= , the Maxwell equation becomes: 

( ) ( )3 0ˆ
S S SI kF I F I Iω ω− = − =k k  

or 

 

 

1For any vector we write â = a a . 
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( ) ( )3 3I Iω+ = +E H E H k  

Left hand side is sum of vector and bivector, while right hand side is scalar 
⋅E k  plus bivector ∧E k , plus pseudoscalar ( )3I ⋅H k , plus vector 
( )3I ∧H k . It follows that both E and H lie on the plane of SI  and then: 

2

3 3 32,I I Iωω ω ω= = → =E Hk H Ek Hk E
k

 

Thus, ω = k  and we get equation 3
ˆI k =H E  from which particularly fol-

lows 2 2=E H  and 3
ˆˆ ˆEkH I= . 

The result for the case 3
ˆ

SI kI=  is that the solution of (2) is  

( ) ( )0 3 0 exp SF I I tω= + − ⋅  E H k r  

where 0E  and 0H  are arbitrary mutually orthogonal vectors of equal length, 
lying on the plane S. Vector k should be normal to that plane, 3

ˆ
Sk I I= −  and 

ω=k . 
In the above result the sense of the SI  orientation and the direction of 𝑘𝑘�⃗  

were assumed to agree with 3
ˆ

SI kI= . Opposite orientation, 3
ˆ

SI kI− = , that’s k 
and SI  compose left hand screw and 3

ˆ
Sk I I= , will give solution 

( )0 exp SF F I tω= − ⋅  k r  with 3
ˆˆ ˆEHk I= . 

Summary: 
For a plane S in three dimensions Maxwell equation (2) has two solutions 

• ( ) ( )0 3 0 exp SF I I tω+ += + − ⋅  E H k r , with 3
ˆ

Sk I I+ = , 3
ˆˆ ˆEHk I+ = , and the 

triple{ }ˆˆ ˆ, ,E H k+  is right hand screw oriented, that’s rotation of Ê  to Ĥ  
by π/2 gives movement of right hand screw in the direction of  3 SI I+ =k k . 

• ( ) ( )0 3 0 exp SF I I tω− −= + − ⋅  E H k r , with 3
ˆ

Sk I I− = − , 3
ˆˆ ˆEHk I− = − , and the 

triple { }ˆˆ ˆ, ,E H k−  is left hand screw oriented, that’s rotation of Ê  to Ĥ  
by π/2 gives movement of left hand screw in the direction of  3 SI I− = −k k  
or, equivalently, movement of right hand screw in the opposite direction, 

−−k . 
• E0 and H0, initial values of E and H, are arbitrary mutually orthogonal vec-

tors of equal length, lying on the plane S. Vectors 3 SI I± ±= ±k k  are normal 
to that plane. The length of the wave vectors ±k  is equal to angular fre-
quency ω. 

Maxwell Equation (2) is a linear one. Then any linear combination of F+  
and F−  saving the structure of (1) will also be a solution.  

Let’s write: 

( ) [ ] ( )

( ) [ ] ( )
0 3 0 3

0 3 0 3

exp exp

exp exp

S S S

S S S

F I I t I I I

F I I t I I I

ω

ω

+

−

   = + − ⋅   


  = + ⋅   

E H r

E H r
            (3) 

Then for arbitrary scalars λ and μ: 

( ) ( ) ( )( )3 3
0 3 0 e e eS S S SS I I I I I II tF F I ωλ µ λ µ   − ⋅ ⋅   

+ −+ = + +r rE H         (4) 

is solution of (2). The item in second parenthesis is weighted linear combination 
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of two states with the same phase in the same plane but opposite sense of orien-
tation. The states are strictly coupled, entangled if you prefer, because bivector 
plane should be the same for both, does not matter what happens with it. 

One another option is: 

( )( ) ( )( )
( )( ) ( )( )

( ) ( )( )
( ) ( )( )

1 3 1 0 3 0 3

2 3 2 0 3 0 3

1 0 1 0 3 1 0 1 0 3

2 0 2 0 3 2 0 2 0 3

exp

exp

exp

exp

S S

S S

S S

S S

I I I t I I

I I I t I I

I I t I I

I I t I I

λ µ ω

λ µ ω

λ µ µ λ ω

λ µ µ λ ω

 + + − ⋅ 
 + + + + ⋅ 

  = − + + − ⋅   
  + − + + + ⋅   

E H r

E H r

E H E H r

E H E H r

 

which is just rotation, along with possible change of length, of electric and mag-
netic initial vectors in their plane.  

3. Transformations of Polarization States 

Polarizations, in our approach, exponents in the solution of (3), have the form of 
states [3], that’s elements of 3G+ : 3 cos sin e SI

S SG I I ϕα β ϕ ϕ+ + ≡ + = , distri-
buted in ( ),t r  space. They are operators than can act on observables, also ele-
ments of 3G , particularly other polarizations. Such states can be depicted in the 
current geometric algebra formalism using a triple of basis bivectors in three 
dimensions { }1 2 3, ,B B B  (Figure 1): 

The basis bivectors satisfy multiplication rules (in the righth and screw orien-
tation of 3I ):  

1 2 3B B B= − , 1 3 2B B B= , 2 3 1B B B= −  
One can identify basis bivectors with usual coordinate planes: 1 ˆ ˆB yz= , 

2 ˆˆB zx= , 3 ˆˆB xy= . Any one of these three bivectors can be taken as explicitly 
identifying imaginary unit, though any unit value bivector in three dimensions 
can take the role [2], [4]. 

Thus:  

( )1 1 2 2 3 3 1 1 2 2 3 3SI b B b B b B B B Bα β α β α β β β+ = + + + ≡ + + +  

The difference between units of information in classical computational scheme, 
quantum mechanical conventional computations (qubits) and geometric algebra 
 

 
Figure 1. Basis of bivectors and unit value pseudoscalar. 
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scheme (g-qubits) with variable explicitly defined complex plane is seen from 
Figure 2. 

Circular polarizations received as solutions of Maxwell Equation (2) is an ex-
cellent choice to have such g-qubits in a lab. 

Commonly accepted idea to use systems of qubits to tremendously increase 
speed of computations is based on assumption of entanglement – roughly 
speaking when touching one qubit all the other in the system react instantly, in 
no time. A bit strange, though you should not care about that because our para-
digm is very different. 

Assume we have some general state:  

( )1 1 2 2 3 3 1 1 2 2 3 3SI b B b B b B B B Bα β α β α β β β+ = + + + ≡ + + +  

The state can be identified as a point ( )1 1 2 3, , ,α β β β  on unit sphere 3S . It 
can be subjected to a Clifford translation 

( )e ClI
S SI Iψα β α β∆+ ⇒ +  

executing displacement ψ∆  at point ( )1 1 2 3, , ,α β β β  along intersection of 3S  
with the unit bivector plane ClI . 

Let’s make notations more like conventional quantum mechanical ones. I will 
write: 

( ) ( ), , , ,,  
S SS S SI II g I I g

α β α β
α β α β α β+ ≡ + = − ≡  

and use Hamiltonian like form of the Clifford translation bivector.  
Conventional Hamiltonian 

 

 

Figure 2. Differences between bits, qubits and g-qubits. 
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1 2 3

2 3 1

i
i

γ γ γ γ
γ γ γ γ

+ − 
 + − 

, 

with removed not important scalar γ, has the lift in 3G+  [3]: 

( )3 1 1 2 2 3 3I B B Bγ γ γ= + +  

Then the associated Clifford translation plane bivector is ( )3I t−  . By nor-
malizing the bivector to unit value we get generalization of imaginary unit  

( )
( )3

t
i I

t
⇒




, 

that is critical for the whole approach. Therefore, for some Δt, Clifford transla-
tion for a given Hamiltonian is: 

( ) ( ) ( ) ( )( )

( )
( ) ( )

( ) ( ) ( ) ( )( )

3

, ,

, ,
e

S

S

t t t t I t t

t
I t t

t

t t I t

g t t

g t

α β

α β

+∆ +∆ +∆

 
 − ∆ 
 

+ ∆

=





                  (5) 

For an arbitrary sequence of infinitesimal Clifford translations, the final state 
is integral2  

( ) ( ) ( ) ( ) ( ) ( )( )
d

, ,
e H l

S

I l l

l l I l
g l

α β

−

∫


 

along the curve on unit sphere 3S  composed of infinitesimal displacements by 

( )
( )

( )3 d
t

I l l
t

 
−  
 





 

Let’s calculate the result of the right-hand side of (5) in general case when the 

plane of ( )
( )3

t
I

t



 differs from ( )S t . 

To calculate the geometric algebra product of the two exponents in Clifford 
translation with not coinciding exponent planes, 1 21 2e eS SI φ I φ∆ , 1 2S S≠ , let’s first 
expand 

1SI  in original basis to get formulas for generators of Clifford transla-
tion. If 

1 1 1 2 2 3 3SI B B Bγ γ γ= + +  then a part of geometrical product 1 21 2e eS SI φ I φ∆  
is: 

( )( )
( ) ( ) ( ) ( )
( ) ( )

1 2

1 2 1 2

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3 3 2 2 3 1 1 3 3 1 2 2 1 1 2 3

3

S S

S S S S

I I

B B B B B B

B B B

I I I I I

γ γ γ β β β

γ β γ β γ β γ β γ β γ β γ β γ β γ β

= + + + +

= − + + + − + − + −

= − ⋅ − × = ⋅ + ∧γ β γ β

 

(see Figure 3) 
where γ  and β  are vectors dual to bivectors 

1SI  and 
2SI . 

Thus, the full product is: 

 

 

2In the case of constant plane of Hamiltonian, it easily follows the Schrodinger equation of conven-
tional quantum mechanics with clearly defined imaginary unit. 
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Figure 3. Two bivector geometrical product. 

 

( )
( )

1 21 2
1

2 1 2

1 2 2

1 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

e e cos cos sin cos

cos sin sin sin

cos cos sin cos

cos sin sin sin

S SI I
S

S S S

S S S

S S S S S

I

I I I

I I I

I I I I I

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

∆ = ∆ + ∆

+ ∆ + ∆

= ∆ − ∆

− ∆ + ∆

 

( )
( )

( )

1 2

1 2 1 2

1 2 1 2

scalar part

bivector part,expansion in no

1 2 1 2

1 2 1

n-orthonormal basis

2

,

1 2

,

cos cos sin sin

sin cos cos sin sin sin

S S S S

S S

S S S S

I I I I

I I

I I I I

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

∧

= ∆ + ∆ ⋅

+ ∆ + ∆ + ∆ ∧





3 

4. Transformations of Circular Polarized Electromagnetic  
Fields 

Now we have everything to retrieve action of Clifford translation generated by a 
Hamiltonian on general solution (4):  

( )
( ) ( )

( ) ( )( ) ( )( )( )3
3 3

0 3 0e e eS S S S

t
I t t

t I t I I I t I II ω ωλ µ
 
 − ∆  − ⋅ + ⋅  + +r rE H



  

To make expressions simpler I will use notations ( )
( )3

t
I I

t
≡ 




,  

( )( )3 St I Iω ϕ+− ⋅ ≡r , and ( )( )3 St I Iω ϕ−+ ⋅ ≡r . Then we get (see Sections 1.3 

and 1.6 in [3] for multiplication details): 
( ) ( ) ( )

( ) ( ) ( )( )
0 3 0

0 3 0

e e e

e e e e

S S

S S

I t t I I

I t t I t tI I

I

I

ϕ ϕ

ϕ ϕ

λ µ

λ µ

+ −

+ −

− ∆

− ∆ − ∆

+ +

= − + +

E H

E H



 



 
 

( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( )(

( )( ) ( )) ( ) ( )( )(
( )( ) ( )( ) ( ))

0 3 0

0 3 0

0 3 0

cos cos sin sin

sin cos cos sin

sin sin sin cos

cos sin sin sin

S

S

S

S S

I t t t t I I

I t t I t t I

t t I I I t t I

t t I t t I I

λ ϕ ϕ

λ ϕ ϕ

ϕ µ ϕ

ϕ ϕ

+ +

+ +

+ −

− −

= − + ∆ − ∆ ⋅

− + ∆ + ∆

+ ∆ ∧ − + ∆

+ ∆ + ∆ ∧

E H

E H

E H





 



 

 

 

 

 

 

 

3In the case 
1 2S SI I=  we trivially have rotation of 22e SI ϕ  by angle 1ϕ∆ . 
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Let’s take popular case of 3 ˆˆS B yI x= =  (plane orthogonal to ẑ  axis) and 

1 ˆ ˆyzI B= =  (or 2 ˆẑxI B= = , does not matter.) The above formula becomes: 

( ) ( )( ) ( )( )(
( )( ) ( )( ) )

( )( ) ( )( )(
( )( ) ( )( ) )

0 3 0 1

2 3

1

2 3

cos cos sin cos

sin sin cos sin

cos cos sin cos

sin sin cos sin

I t t t t B

t t B t t B

t t t t B

t t B t t B

λ ϕ ϕ

ϕ ϕ

µ ϕ ϕ

ϕ ϕ

+ +

+ +

− −

− −

− + ∆ + ∆

+ ∆ + ∆

+ ∆ + ∆

+ ∆ + ∆ 

E H  

 

 

 

 

It makes simpler if F+  and F−  are equally weighted, say both λ and μ are 
equal to one:  

( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( ) ( ) ( )( ) ( )( )
( )( ) ( )( ) )

0 3 0 1

2 3

0 3 0 1

2 3

cos cos cos sin cos cos

sin sin sin cos sin sin

2 cos cos cos sin cos

sin sin c

ˆ

os sin

z

I t t t t B

t t B t t B

I t t t t t tB

t t tB t t tB

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ω ω

ω ω

+ +

− −

− −

+ +

+ +

+

− + ∆ + ∆

+ ∆ + ∆

− + ∆ + ∆

+ ∆ +

+ 

= ⋅

∆

E

E r

H

H

 

 

 

 

  

(6) 

5. Action of Polarization States on Observables 

Since a state in the described formalism is operator that gives the result of mea-
surement when acting on observable, which can be any element of geometric al-
gebra 3G , the following is detailed description of the case when the element in 
parenthesis of the (6) expression acts on some bivector. Such operation is gene-
ralization of the Hopf fibration and rotates the bivector in three dimensions.  

Denoting4:  

( )( ) ( )( )
( )( ) ( )( )

,

1

2 3

1 1 2 2 3 3

cos cos sin cos

sin sin cos sin

eI

t t t t t tB

t t tB t t tB

B B B ωψ

ω ω

ω ω

α β β β

∆ + ∆

+ ∆ + ∆

≡ + + + ≡ 

 

   

where  

( ), 1 1 2 2 3 3I B B Bω γ γ γ= + +  

( )( )
( )( ) ( )( )

1
2 2 2

sin cos

sin cos sin

t t t

t t t t t

ω
γ

ω

∆
=

∆ + ∆



 
 

( )( )
( )( ) ( )( )

2
2 2 2

sin sin

sin cos sin

t t t

t t t t t

ω
γ

ω

∆
=

∆ + ∆



 
 

( )( )
( )( ) ( )( )

3
2 2 2

cos sin

sin cos sin

t t t

t t t t t

ω
γ

ω

∆
=

∆ + ∆



 
 

 

 

4Easy to see that the left-hand side is unit value element of 3G+ . 
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( )( )( )1cos cos cost t tψ ω−= ∆  

and taking a bivector operand (observable) 1 1 2 2 3 3c B c B c B+ +  we get the result 
of measurement, action of the state on observable (see [3], [4] for details): 

( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

, ,
1 1 2 2 3 3

2 2 2 2
1 1 2 3 2 1 2 3 3 1 3 2 1

2 2 2 2
1 3 1 2 2 2 1 3 3 2 3 1 2

2 2 2 2
1 1 3 2 2 2 3 1 3 3 1 2 3

e e

2 2

2 2

2 2

I Ic B c B c B

c c c B

c c c B

c c c B

ω ωψ ψ

α β β β β β αβ β β αβ

αβ β β α β β β β β αβ

β β αβ β β αβ α β β β

− + +

 = + − + + − + + 

 + + + + − + + − 

 + − + + + + − + 

 

 

( )( ) ( )( )( )( )
( )( ) ( )( )( )( )

( )( ) ( )( )( )

1 2 3 1

1 2 3 2

2 3 3

cos 2 sin 2 cos 2 sin 2

sin 2 cos 2 cos 2 sin 2

sin 2 cos 2

c t t c t t c t t B

c t t c t t c t t B

c t t c t t B

ω ω

ω ω

= − ∆ − ∆

+ + ∆ − ∆

+ ∆ + ∆

 

 

 

 

One interesting remark. If the observable belongs only to the 1B  plane, that’s 

32 0c c= = , the result of measurement has only components in 1B  and 2B , 
projections of the value 1c  due to rotation with angular velocity 2ω around the 
ẑ  axis. 

6. Polarization States Acting on Multiple Observables 

The core of quantum computing should not be in entanglement as it understood 
in conventional quantum mechanics, which only formally follows from repre-
sentation of the many particle states as tensor products of individual particle 
states and not supported by really operating physical devices. The core of quan-
tum computing scheme should be in manipulation and transferring of sets of 
states as operators decomposed in geometrical algebra variant of qubits 
(g-qubits), or four-dimensional unit sphere points, if you prefer. Such operators 
can act on observables, particularly through measurements. From the recent 
calculation we realize that the action of state, which depends on ( ),t r , on an 
observable can be done only if observable is defined at the same point ( ),t r  
where the state is defined [5]. In this way quantum computer is an analog com-
puter keeping information in sets of objects with infinite number of degrees of 
freedom, contrary to the two value bits or two-dimensional Hilbert space ele-
ments, qubits. 

Thus, if we have a state  

( ) ( ) ( ) ( )( ), , , , , , ,S SS I t t I tI g g
α β α β

α β+ ≡ = r r r  

as in the case of polarization defined states, it becomes a state acting on a set of 
observables if the latter are defined at some given points:  

( ) ( )( ) ( ) ( ) ( )2
0 0,, , , , 1 , , 1, ,

n nn n C n nn n n n nC tc t I tc c c t I c t n N= = + − =rr r r r   

Then the state transforms into multi-observable one: 
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Figure 4. Decoding of g-qubit message. 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

1 1 1 1 1 1

1 1 1, , , , ,

, , , , ,

1 , , , , ,

, , , , , , , , , ,

d d

d d

d d

S

S

S

S N N N N S N N

N t t I t

N Nt t I t

n N
n nn t t I t

g t t I t g t t I t

g g g t t t

g t t t

g t t t

α β

α β

α β

α β α β

δ δ

δ δ

δ δ=

=

≡ = − − +

+ − −

= − −

∫∫
∫∫
∑ ∫∫

r r r

r r r

r r r

r r r r r r

r r r

r r r

r r r





 

This formula for 1 Ng g  bears clear physical and geometrical sense, con-
trary to conventional quantum mechanics definition following formally from 
tensor product which does not have good physical interpretation but is the root 
of entanglement-based quantum computing.  

The formula also prompts how quantum encryption decoding can be effec-
tively implemented with the bivector value security key (see Figure 4). 

The formula can also be applied to challenging area of anyons in three dimen-
sions. 

7. Conclusion 

Two seminal ideas—variable and explicitly defined complex plane in three di-
mensions, and the 3G+  states5 as operators acting on observables—allow to put 
forth comprehensive and much more detailed formalism appropriate for quan-
tum mechanics in general and particularly for quantum computing schemes. 
The approach may be thought about, for example, as a far going geometric alge-
bra generalization of some proposals for quantum computing formulated in 
terms of light beam time bins, see [6], [7], but giving much more strength and 
flexibility in practical implementation. 
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